
IES The Sixth International Conference “INTERNET –EDUCATION - SCIENCE”
Vinnytsia, Ukraine, October 7 –11, 2008

528

THE TOTP FUNCTION CLASS

Andreas Nikolas Goebel
National Technical University of Athens

9, Iroon Plytexneiou, Zografou, 15780, Athens, Greece, tel.:00302107721644
E-mail: agob@corelab.ntua.gr

Abstract
 Valiant has observed that there are problems in P with their counting version in #P . Pagourtzis and Zachos defined

and studied 2 new classes #PE and TotP, containing #P problems with decision version in P and functions that represent
all the computation paths of a poly-NDTM respectively. This paper is mainly a survey on their results about this new classes.
Also we prove that TotP shares the same closure properties with #P . Furthermore it is shown that TotP is exactly the Karp
closure of self-reducible function of #PE . Several interesting problems are shown to belong in TotP.

1 Introduction
Valiant has introduced the class P# , which counts the accepting computation paths of a poly-NDTM.

As we have seen it contains counting versions of known NP problems, like SAT, HamiltonCycles etc. These
problems are considered hard to decide (since they are NP-complete). What is remarkable is that there exist
other P# problems with their decision version in P, like PerfectMatchings and DNF-SAT.

In this paper, mainly based on the work of Pagourtzis and Zachos [5] we shall investigate the complexity
of such ``hard-to-count-easy-to-decide'' problems. We notice that these problems are P# -complete only under
Cook reductions and not Karp reductions, leading us to an important difference between these two reductions.
Most of the known classes that that can be defined via poly-NDTM's, including P# , are closed under Karp
reductions. On the other hand the class [1]#PFP , by definition, Cook[1]-reduces to P# , while, as Toda and
Watanabe have proven in [10], it is not contained in P# unless PH collapses. This means that P# is not
closed under Cook[1] reduction unless PH collapses, which is considered unlikely. Therefore, we can say that
Cook reductions blur structural differences between complexity classes of functions.

2 Definitions
The computational model is non-deterministic Turing machine. When counting the paths of an non-

deterministic TM, we call it counting Turing machine (CTM).

2.1 Reductions
 Definition 2.1 We say that a problem (or function) A reduces to a problem B by Karp reduction and we

denote BA p
m≤ , if and only if there exists a polynomial-time computable function f such that

))((BxfAxx ∈⇔∈∀ . Symbolically we have:

),)((,: BxfAxxFPfBA p
m ∈⇔∈∀∈∃≤

were FP is the class of all polynomial-time computable functions.
Definition 2.2 We say that a problem A (or function) reduces to a problem B by Cook (Turing) reduction

and we denote BA p
T≤ , if A can be computed by a deterministic TM within polynomial time with the use of an

oracle for B.
This means that the TM may query the oracle as many times and for any instance of B and get an instant

reply. Additionally: BABA p
T

p
m ≤⇒≤

By AP we denote the class of problems that can be computed by a deterministic TM within polynomial
time and the use of an oracle for A, or else:

 }|{= ALLP p
T

A ≤
A widely used, special case of the Cook reduction for functions is the following:
Definition 2.3 A function f (or problem) reduces to a function g by Cook[1] reduction and we denote

BA p
T−≤1 if and only if)))((,(=)(, 2121 xhgxhxfxthatsuchFPhh ∀∈∃ .
Definition 2.4 We say that a class C is closed under a reduction ≤ if:

 CC ∈⇒≤∈ BAandBA
Proposition 2.5 If two classes C and 'C are both closed under reductions and there is a problem A

which is complete for both classes, then '= CC

Sec.H Intelligent Information Systems

 529

• the function classes F and G are Cook[1]-interreducible (or indistinguishable under Cook[1]
reductions)

if and only if [1]GF FP⊆ and [1]FG FP⊆

if and only if [1][1] = GF FPFP
if and only if [1][1] = GF PP

2.2 Classes
For each function N→Σ∈ *f we define a related language:

 0>)(:= xfxLf

For function problems this language is the decision version. In particular if a function f corresponds to

the counting version of a search problem then fL corresponds to the existence version.

Definition 2.6 PE# is the class that contains functions of P# whose related language is in P.
In other words PE# contains all the ``hard-to-count-easy-to-decide'' problems, like

chingsPerfectMat# and SATDNF −# . We shall also see that PE# cannot contain SAT# unless
NPP = .

The following function associated with a poly-NDTM M , will help us define the next class that we will
investigate in this section:

 1)#(=)(−xinputonMofpathsxtotM

The “minus one” in the definition of Mtot was introduced so that the function can take a zero value.

Definition 2.7 }:{= NDTMpolyaisMtotTotP M −

3 TotP, PE# and P#
For the proofs of the following propositions the reader may refer to [5]
Proposition 3.1 FPTotPP −⊆#

where the minus sign refers to elementwise subtraction.
Now we shall see the inclusions amongst the function classes we have so far defined.
Proposition 3.2 PPETotPFP ## ⊆⊆⊆ . This inclusions are proper unless NPP =
The classes totP, PE# and P# are all closed under Karp reduction so we have the following:
Corollary 3.3 totP, PE# and P# are not Karp equivalent unless P=NP.
A function class F with F∈f is called polynomially bounded if there exists a polynomial p such

that for all x , |)(||)(| xpxf ≤ . We will now see that for such a function class F it holds
FF FPFP ⊆− . Let FPf −∈F this mean that there exist F∈1h and FPh ∈2 such that for all x ,

)()(=)(21 xhxhxf − . Let M be a DTM that can query the oracle F once. M can calculate 1h in

polynomial time and with one oracle query it get the value of 2h , which is of polynomially bounded length as in

F . So we have proven that [1]FFPf ∈ . Now we can see that totP, PE# and P# are Cook[1]-
interreducible.

Corollary 3.4 [1]#[1]#[1] == PPETotP FPFPFP

Proof.
)[1]([1]#[1]#[1] FPTotPFPPPETotP FPFPFPFP

−
⊆⊆⊆ . But having an FP oracle on a poly-DTM

M doesn't increase M 's computational power so FPFPFP = . Hence [1])[1](TotPFPTotPFP FPFP ⊆
−

By combining this latter corollary with Toda's result [9] we get the following:

 [1]#[1] = PETotP PPPH ⊆

4 Properties of TotP
In this section we will show the properties of TotP. We shall begin with the closure properties, which are

also shared with P# .

4.1 Closure Properties
Proposition 4.1 TotP has the following closure properties:

IES The Sixth International Conference “INTERNET –EDUCATION - SCIENCE”
Vinnytsia, Ukraine, October 7 –11, 2008

530

1. TotPFPTotP =D
2. If TotPf ∈ and p is a polynomial, then the function

),(=)(
|)(|||

〉〈∑
≤

yxfxg
xpy

is in TotP
3. If TotPf ∈ and p is a polynomial, then the function

),(=)(
|)(|||

〉〈∏
≤

yxfxg
xpy

is in TotP
4. If TotPf ∈ , FPk ∈ , and)(xk is bounded by a polynomial in || x , then the function

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)(
)(

=)(
xk
xf

xg

is in TotP
Proof.

 1. Given a poly-CTM M and a function FPg∈ , we construct the poly-CTM N that simulates))((xgM

for all *Σ∈x . Obviously gtottot MN D= .

 2. Let Mtotf = for a poly-CTM M . We can construct a poly-CTM N that first guesses a y of length

|)(||| xpy ≤ . For each y guessed it branches (|)(|xpdupl) and then simulates M on input 〉〈 yx, .

Obviously Ntotg = .

 3. Let Mtotf = for a poly-CTM M . Then the poly-CTm N calculates |)(| xp deterministically and then
simulates),1(〉〈xM . On the end of each computation path N then simulates),2(〉〈xM , then

),3(〉〈xM , etc until)|)(|,(〉〈 xpxM is simulated. We can see that Ntotg =

 4. As we stated earlier we can lexicographically order the paths of a CTM. Let Mtotf = for a poly-CTM M .
We shall construct the CTM N as follows: First calculate |)(| xp deterministically; then simulate M and
on each path simulate M but branch if and only if the paths are in strictly increasing lexicographical order.
The branching prevention can be achieved by changing the transition relation of a non-deterministic machine
by reducing the number of the legal next actions. The reader with some elementary combinatorics knowledge
may verify that Ntotg = .

 4.2 Self-reducibility
We will formalize the notion of self-reducibility in a different way from Ko’s self-reducibility.
Definition 4.2 A function N→Σ*:f is called poly-time self-reducible if there exist polynomials r

and q and polynomial time computable functions N→Σ*:h , N→Σ*:g and N→Σ*:t such that for

all *Σ∈x

 1.)),((),()(=)(|)(|

0=
ixhfixgxtxf xr

i∑+ , that is, f can be processed recursively by reducing x to),(ixh ,

|))(|(0 xri ≤≤ , and
 2. the recursion terminates after at most polynomial depth (that is, the value of f on instance

),)),,(((|)(|21 xqiiixhhh …… can be computed deterministically in polynomial time).

 4.3 Main Theorem
Let SRPE# denote the class of all self reducible functions of PE# . Now we are ready to prove the

main result for the TotP class.
Theorem 4.3 TotP is exactly the closure under Karp reductions of SRPE#
The proof is includen in [5]. In this paper we will only show the soundess of the algorithm by induction in

the depth of recursion of f(x). If 0=)(xf then M stops, hence we have 1 computational leaf and

Sec.H Intelligent Information Systems

 531

1)(=10=1=)(++ xfxtotM . If 0>)(xf , then a non-deterministic choice is made among stopping and

calling)(xGenTree f . Therefore the computation has 1+l leaves where l is the computation tree of

)(xGenTree f . We will prove, by induction on the recursion depth, that for any polynomial-time self reducible

function f with 0>)(xf the computation tree of)(xGenTree f has exactly)(xf leaves.

- If f can be computed directly in polynomial time then)(xGenTree f spawns)(xf non-
deterministic branches and stops at each one of them. Thus the base of the induction holds.

- Assume now that the claim is true for all functions that can be computed with recursion depth at most
k , i.e. they can be computed deterministically in polynomial time on the instance),)),,(((21 kiiixhhh ……

(it might have less recursion depth). Consider now a function f that requires 1+k recursive reductions to be

calculated.)(xGenTree f first computes the functions),(),,(ixhixg and)(xt for all i , |)(|0 xri ≤≤ .

For each of the 1|)(| +xr different i 's,)(xGenTree f creates a different subtree with),(ixg branches and

at each one it computes)),((ixhGenTree f . So we have),(|)(|

0=
ixgxr

i∑ different branches, and at each one

the computations continue with)),((ixhGenTree f . Each)),((ixhf requires k recursive reductions to be

calculated. Due to the induction hypothesis, each)),((ixhGenTree f will have exactly)),((ixhf

computation leaves. So far the 1|)(| +xr computation subtrees of)(xGenTree f lead to

)),((),(|)(|

0=
ixhfixgxr

i∑ computation leaves. If we add the)(xt computation leaves of the last

nondeterministic branch of)(xGenTree f to the latter, it is proven that)(xGenTree f has exactly

)(=)),((),()(|)(|

0=
xfixhfixgxt xr

i∑+ computation leaves. Note that if any of the functions used above has

0 value,)(xGenTree f adds no computation paths.
From the definition of polynomial-time self reducible functions, the recursion depth is polynomial on

|| x , hence each computation path requires at most polynomial time (definition 4.2, 4.2).

5 TotP Complete Problems Under Cook[1] Reductions
We will end by enumerating some TotP-complete problems. Once again the reader may refer to [5] for

the proofs.
Proposition 5.1 The following problems are TotP-complete under Cook[1] reduction:

1. chingsPerfectMat#
Given a bipartite graph, count the number of perfect matchings.
2. Permanent
Given a (0,1) -matrix calculate its permanent.
3. SATDNF −#
Given a boolean formula in disjunctive normal form, count the number of its satisfying assignments.
4. CliquesNon −#

Given a graph G and a positive integer k , count the number of size- k subgraphs of G that are not
cliques.

5. dentSetsNonIndepen#
Given a graph G and a positive integer k , count the number of size- k subgraphs of G that are not

independent sets.

6 Conclusions
So we have defined a finer distinction within the class P# , the classes TotP and PE# . We have shown

several interesting and natural problems that are contained in these classes. They have been shown to be
Cook[1]-complete for TotP. The next step is to show that they are Karp-complete for TotP. If that is not
possible, then define a new class under which the problems will be Karp-complete.

We have also shown that this class of functions, TotP, shares the same closure properties that are known
for P# , although their computational trees have been proven to be different.

IES The Sixth International Conference “INTERNET –EDUCATION - SCIENCE”
Vinnytsia, Ukraine, October 7 –11, 2008

532

Last we have proven that TotP doesn't contain PE# problems with trivial related language like

1# +SAT . We conjecture that all PE# problems that do not have a trivial related language are in TotP.

7 Acknowledgments
I would like to thank my professors Stathis Zachos and Aris Pagourtzis, and also the corelab students:

Evangelos Babas, Aris Tentes, George Pierakos, Antonis Achileos and Georgia Kaouri for helpful discussions
and observations.

References:
[1] Arnaud Durand and Miki Hermann and Phokion G. Kolaitis. Subtractive Reductions and Complete

Problems for Counting Complexity Classes. MFCS, pages 323-332, 2000.
[2] Stephen A. Fenner and Lance Fortnow and Stuart A. Kurtz. Gap-Definable Counting Classes. Structure in

Complexity Theory Conference, pages 30-42, 1991.
[3] Johannes Köbler and Uwe Schöning and Jacobo Torán. On Counting and Approximation. Acta Inf.,

26(4):363-379, 1989.
[4] Aggelos Kiayias Aris Pagourtzis and Stathis Zachos. Cook Reductions Blur Structural Differences Between

Functional Complexity Classes. Panhellenic Logic Symposium, pages 132-137, 1999.
[5] Aris Pagourtzis and Stathis Zachos. The Complexity of Counting Functions with Easy Decision Version.

MFCS, pages 741-752, 2006.
[6] Seinosuke Toda. PP is as Hard as the Polynomial-Time Hierarchy. SIAM J. Comput., 20(5):865-877, 1991.
[7] Seinosuke Toda and Mitsunori Ogiwara. Counting Classes Are at Least as Hard as the Polynomial-Time

Hierarchy. Structure in Complexity Theory Conference, pages 2-12, 1991.
[8] Seinosuke Toda and Osamu Watanabe. Polynomial Time 1-Turing Reductions from #PH to #P. Theor.

Comput. Sci., 100(1):205-221, 1992.
[9] Leslie G. Valiant. The Complexity of Computing the Permanent. Theor. Comput. Sci., 8:189-201, 1979.

