ИССЛЕДОВАНИЕ ОПТИМАЛЬНЫХ КРЕДИТНЫХ СТРАТЕГИЙ В ПРОЦЕССАХ РАЗВИТИЯ МНОГОПРОДУКТОВЫХ СИСТЕМ

Ирина Колесник

Винницкий национальный технический университет, Хмельницкое шоссе, 95, Винница, 21021, Украина, тел.: (0432) 26-49-09, E-Mail: I R A.76@mail.ru

Аннотация

Сегодня общество знаний не метафора, а реальность. Объёмы свободных ресурсов - материальных, финансовых, кадровых быстро растут. Индивиды и организации, имеющие свободные ресурсы ищут знания — идеи, технологии, конструкции для инвестиций. Индивиды и организации, имеющие только знания, ищут источники заёмных ресурсов кредитов. Очевидно, и дающему, и берущему кредиты, желательно иметь комплексную систему для прогнозирования инвестиционного проекта. Предлагается система моделей и программ, позволяющая получить: оптимальную стратегию развития и её составляющую — оптимальную кредитную стратегию, функции влияния и данные риск анализа. Система моделей оказалось генератором новых знаний о свойствах оптимальных процессов развития. В частности, это разрывность кредитных стратегий, уменьшение объёма кредитования объекта при уменьшении ставки кредитов. Найдена процедура кредитования проектов, выгодная обеим сторонам.

Постановка проблемы

Сегодня 50% продуктов из нашего окружения, не имели прямых прототипов 5 лет назад. Современное производство – последовательность быстро меняющихся изделий, технологий, рыночных окон. Высокие технологии, глобализация экономики требуют высоких темпов развития производственных систем. Сегодня для ускорения развития выгодно брать даже дорогие кредиты. Как именно распределять собственные и кредитные ресурсы между развитием отдельных производств (= в пространстве) и времени? Это задача действительно для университетского уровня образования.

Нерешенные части проблемы. В массовой литературе по управлению проектами только общие рекомендации и неадекватные модели. Причины этого: а) имеем сложную вариационную задачу, б) эффективные решения обычно остаются внутрифирменными методиками. Для определения оптимальной стратегии развития необходимо сочетание теоретических знаний, интуиции и опыта. Решение этой проблемы — в разработке системы математических моделей, ориентированных на вычислительный эксперимент.

Цели разработки – создание методов и программ средств для оптимизации и моделирования достаточно широкого класса задач управления развитием производственных систем. Программный комплекс предназначен для самостоятельного обучения, научных исследований и самостоятельной разработки новых моделей для новых задач.

Данная статья — только "узел" в сети работ, посвящённых несуществующему направлению: "конструирование рабочих моделей социо-технико-экономических систем". Традиционно и устойчиво существуют технические, экономические и социальные науки, всё прочее (вспомним кибернетику, синергетику) — временные, иногда спекулятивные, ответвления. Термин "несуществующее" означает "временное", иногда продуктивное направление, со временем впдающее в одно из стабильных направлений науки. Данная статься опирается на результаты ряда предыдущих работ [1-5], полезнее и проще кратко изложить суть результатов, чем расставлять ссылки.

Компоненты модели развития с использованием внешних ресурсов

Метод оптимального агрегирования. Вспомним "самоочевидные" задачи нелинейного программирования.

Прямая задача - максимизация суммарного производства при ограничении ресурсов. Рассматривается, система из N элементов, которые используют некоторый ресурс в количестве xi и производят продукцию в количествах:

уі = fi(xi); i = 1 ... N где xi - количество ресурса, выделенного i-му элементу. Нужно распределить ресурс R так, чтобы максимизировать суммарное производство:

$$F(x_1,x_2,..,x_N) = \sum_{i=1}^{N} fi(x_i)$$
; при условии $G(x_1,x_2,..,x_N) = \sum_{i=1}^{N} x_i - R = 0$. Переменные управления - x_i

Сопряжённая задача - минимизация суммарных расходов при ограничении уровня суммарного производства. Рассматривается та же система из N производственных элементов. Нужно распределить нагрузку *Ys* так, чтобы минимизировать суммарные расходы:

$$Gs(x_1,x_2,..,x_N) = \sum_{i=1}^N x_i$$
; при условии $Fs(x_1,x_2,..,x_N) = \sum_{i=1}^N fi(x_i) - Ys = 0$. Управления - x_i , или

 $yi = fi(x_i).$

Методы решения. Суть известных методов нелинейного программирования - нахождение экстремума функции N переменных при ограничениях, или "задача выбора точки в N —мерном фазовом пространстве, по терминологии Беллмана. Но, главной задачей своих исследований, Беллман считал поиск методов замены задачи выбора точки в N —мерном фазовом пространстве последовательностью задач выбора в фазовом пространстве меньшей размерности, в идеале — в одномерном. Метод динамического программирования по сути есть разбиением многошаговой оптимизационной задачи "во времени". Метод оптимального агрегирования можно назвать разбиением одношаговой многомерной оптимизационной задачи "в пространстве".

Первый шаг в методе оптимального агрегирования - расширение классической задачи: Вводим вектор-функцию оптимального распределения ресурса $Dop(R), 0 \le R \le Rmax$, где Rmax - максимальное значение ограничения. Компоненты этой вектор-функция задают оптимальное по критерию суммарного производства распределение ресурса. Введем оптимальную производственную функцию системы

$$Yop(R) = \sum_{i=1}^{N} fi(Dop(R)_i)$$

Функция Yop(R) для каждого значения ограничения по ресурсу R задает максимальную эффективность превращения ресурса в продукт. Формулировка расширенной оптимизационной задачи: задано N производственных функций, аддитивное ограничение по ресурсу и аддитивный критерий - суммарное производство; требуется найти оптимальную производственную функцию системы Yop(R) и векторфункцию оптимального распределения ресурса Dop(R). Существенное преимущество расширения - уменьшение общего объема вычислений: функции оптимального распределения имеют за счёт учёта своств оптимальных стратегий, например, участков "всё в развитие".

Следующий шаг: **переход к безразмерным переменным управления**. Вместо переменных управления x1, x2,...xN введем безразмерные переменные $\alpha 1$, $\alpha 1$,... αN ; где $\alpha 1 = x1 \div R$; $\alpha 2 = x2 \div R$. Содержательно эти переменные — доли ресурса для соответствующих элементов, очевидно, что сумма этих долей равна единице. На рис.1 представлены целевые функции для системы из двух элементов и траектории оптимального распределения ресурса при изменении ограничения по ресурсу, для двух альтернативных наборов переменных.

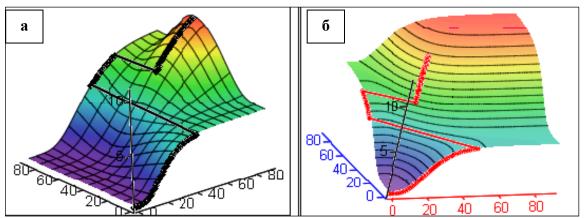


Рис.1. Альтернативы выбора переменных управления – безразмерных и размерных

Такая формальная замена позволяет доказать, что оптимальная производственная функция (ПФ) будет огибающей определённого множества производственных функций элементов системы. Именно на этом строится обоснование метода оптимального агрегирования. Введем множество α-функций:

$$f\alpha(fl,f2,\alpha,x) := fl(\alpha \cdot x) + f2[(l-\alpha) \cdot x]$$

Оптимальная $\Pi\Phi$ системы из двух элементов будет **огибающей** множества $f\alpha(fl,f2,\alpha,x), 0 \le \alpha \le l$, то есть результатом применения операции max(...), которая является **ассоциативной и коммутативной**. Очевидно, что для системы с критерием "суммарное производство" оптимальная $\Pi\Phi$ FopN(fl,f2,...,fN) имеет местосвойство:

$$Fop3(f1, f2, f3) = Fop2(f1, Fop2(f2, f3)),$$

Программные средства позволяют реализовать бинарный оператор оптимального агрегирования f2o(f1,f2), который берёт пару производственных функций f1, f2 и возвращает оптимальную производственную функцию и соответствующую вектор-функцию оптимального распределения ресурса. Метод оптимального агрегирования есть истиной, которая после появления переходит в класс "так это же очевидно, а разве может быть иначе" (рис. 2).

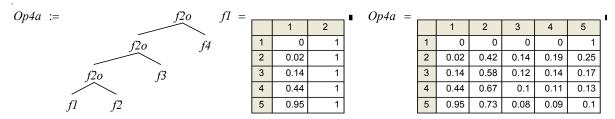


Рис.2. Пример применения оператора оптимального агрегирования

Объём вычислений по этому методу растёт только линейно, а не экспоненциально, метод не имеет ограничений по виду $\Pi\Phi$, потому что максимум функции одной переменной находится методом прямого перебора. Метод по сути заменяет задачу поиска экстремума алгебраической задачей. Оператор оптимального агрегирования порождает алгебру с ассоциативной и коммутативной операцией, элементами которой - массивы переменной размерности.

Постановка и решение задачи оптимального развития. Р. Беллман исследовал структуру решений для вариационной задачи распределения и нашел решения для частного случая - задачи Марковица. Суть этих задач – оптимальное распределение наличных ресурсов между накоплением и развитием - созданием "производственных мощностей. Базовая задача была модифицирована по таким компонентам:

- использование метода принципа максимума;
- нахождение максимума функции Гамильтона самым примитивным численным методом прямого перебора;
- использование метода оптимального агрегирования для замены многомерного объекта эквивалентным оптимальным одномерным объектом. Кратко рассмотрим решение одномерной задачи развития методом принципа максимума.

Объект управления: $\frac{d}{dt}x(t)=fin(y(t))$, где x(t) - темп выпуска, y(t) - темп инвестиций, $y(t)=x(t)\cdot u(t)$,

 $0 \le u(t) \le 1$ - нормированное управление, fin(y(t)) – функция отдачи инвестиций – нестрого монотонно возрастающая функция.

Граничные условия $x(\theta) = xo$ - стартовый темп производства, Тр - плановый период.

Критерий $J = \int_0^T x(t) \cdot (I - u(t)) dt$ - "накопленный доход", **цель оптимизации** $min_{ut}(J)$ - управление,

дающее максимум критерия – накопленного за плановый период дохода.

Точное решение задачи. Записываем задачу в каноническом виде - добавляем дифуравнение для критерия:

$$\frac{d}{dt}x\left(t\right)=fin(x\left(t\right)\cdot u(t))=fx\qquad \frac{d}{dt}JI\left(t\right)=x\left(t\right)\cdot \left(I-u(t)\right)=fJ\text{ . Вводим обозначения}$$

$$\frac{d}{dt}x(t) = fin(x(t) \cdot u(t)) = fx$$

$$\frac{d}{dt}JI(t) = x(t) \cdot (1 - u(t)) = fJ$$
 Запишем функцию Гамильтона

$$H(x\,,u)=\,\sum^N\,\,\psi_i\cdot f_i=\,\psi J\cdot fJ+\,\psi x\cdot fx\,.$$

Подставим правые части дифуравнений и получим

$$H(x, u) = \psi J \cdot [x(t) \cdot (1 - u(t))] + \psi x \cdot fin(x(t) \cdot u(t)).$$

Записываем уравнение для определения сопряжённых функций.

$$\frac{d}{dt}\psi J(t) = -\frac{\partial}{\partial I}H(x,u); \qquad \frac{d}{dt}\psi x(t) = -\frac{\partial}{\partial x}H(x,u);$$

Находим соответствующие частные производные от H(x, u)

$$\frac{\partial}{\partial I}H(x,u) = 0; \quad \frac{\partial}{\partial x}H(x,u) = \psi J \cdot (1-u) + \psi x(t) \cdot u \cdot \frac{d}{dx}fin(u \cdot x)$$

Решаем дифуравнения для сопряжённых функций. Первое элементарное: $\frac{d}{dt}\psi J(t)=0$; т

$$\psi J(t) = const = 1$$
.

Второе тоже элементарное, для числовых методов, но безнадежное для получения аналитических решений:

$$\frac{d}{dt}\psi x(t) = -\psi J \cdot (1-u) - \psi x(t) \cdot u \cdot \frac{d}{dx} fin(u \cdot x) = -\psi x(t) \cdot u \cdot \frac{d}{dx} fin(u \cdot x) - (1-u)$$

Особенность решения задач развития методом принципа максимума в том, что функция Гамильтона имеет определённую структуру и свойства, что позволяет легко уточнять и расширять задачу.

Расширение задачи оптимального развития – кредитные стратегии. По неизвестным причинам Беллман не рассматривал вариационную задачу распределения с учётом использования внешних ресурсов - кредитов. Возможно потому, что это простая задача. Введём еще одну переменную - темп кредитов. Теперь мы должны определять кроме оптимальной стратегии развития (распределение ресурсов между накоплением и развитием), еще оптимальную кредитную стратегию - сколько брать кредитов на каждом шаге процесса. Не вводим пока еще одну переменную - темп возвращения кредитов. Рассмотрим обычный для банковской сферы способ возвращения кредитов: равными долями с момента, когда кредит взят и до конца периода, с учетом процентов. Имеем две переменных управления: - темп кредита xkr(t) и доля текущих средств u1(t), направленных в инвестиции. Требуется найти две функции времени u1op(t), xkrop(t), дающие максимум накопленного дохода за плановый период Тр.

Исследование свойств функции Гамильтона позволяет найти удовлетворительные приближения этой функции **в пространстве стратегий**: ведь нас интересуют только положения максимумов этой функции. Вспомним "физический смысл" функции Гамильтона — это "проекция" текущих управлений на конечный результат. Сравним три выражения для функции Гамильтона: точное и приближённое, без кредитов и с кредитами. Введем для сокращения выражений переменную "суммарные текущие ресурсы": xs(t) = x(t) + xkr(t)

$$H(x, u) = x \cdot (1 - u) + fin(x \cdot u) \cdot (T - t);$$

$$H(xs, u) = xs \cdot (1 - u) + fin(xs \cdot u) \cdot (T - t) - xkr \cdot [1 + prc \cdot (T - t)];$$

$$Ho(x, u) = x \cdot (1 - u) + fin(x \cdot u) \cdot \Psi n \left(x, u, \frac{d}{dy} fin(y)\right).$$

В этих выражениях T — время окончания процесса, t — текущее время, (T - t) — время остающееся до конца процесса, x(t) — темп производства, x(t) — темп кредитов, y(t) — y(t) — численное решение для сопряжённой функции.

Анализ оптимальных кредитных стратегий для производителя. Точно так же, как в физике мощный ускоритель элементарных частиц позволяет находить новые результаты, так и адекватная реальности и вычислительно эффективная программа моделирования процессов развития становится генератором новых результатов. Рассмотрим пример исследования зависимости кредитных стратегий производителя от ставки кредитов и эффективности инвестиций. Для получения названных функций влияния выполнялось 20-100 прогонов программы моделирования.

На рис. 3 представлен двухуровневый интерфейс для анализа функций влияния, на рис. 4 представлена серия функций влияния для различных значений эффективности инвестиций..

Важная для эффективности интерфейса на рис. З в том, что пользователь может выбрать точку на функции влияния и увидеть кокой именно оптимальный процесс отображается в эту точку. На рис. 4 в графи-

ческом виде представлена истина: банк и производитель могут одновременно повысить свои доходы (в эпоху Пифагора в доказательствах геометрических теорем теорем било только одно слово "смотри") новая истина

Стратегии возвращения кредитов. Разработана программная система для анализа стратегий На рисунку подано блок прикладів моделювання, як індикатор того, що дійсно задекларовані моделі зроблені, а модулі дійсно працюють.

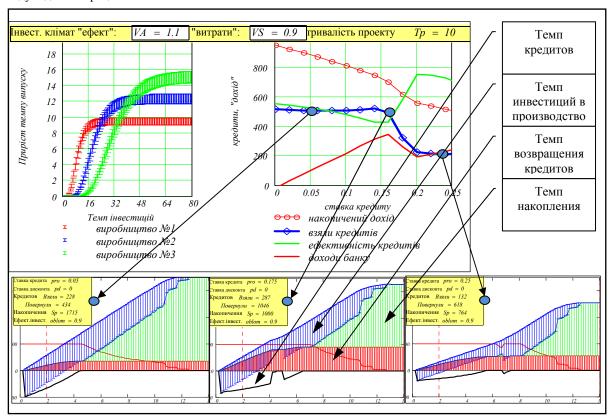


Рис.3. Анализ функции влияния ставки кредитов на показатели инвестиционного проекта

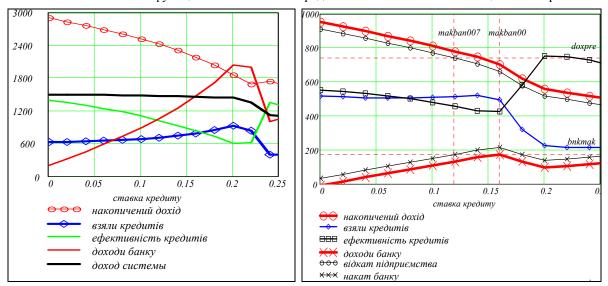


Рис.4. Анализ распределения дохода в системе "производитель – банк"

Заключение

На основе теоретических результатов – метода оптимального агрегирования и решения вариационной задачи развития су чётом использования кредитов разработана система программных модулей и интерфейсов – инструмент объективного анализа. Получены новые результаты, полезные для теории и практики: разрывность кредитных стратегий, уменьшение спроса на кредиты при низких ставках кредитов, найдены условия антагонизма интересов банка и производителя, предложено решение по согла-

сованию интересов сторон за счёт справедливого распределения доходов. Методологические результаты работы: показано, что кредиты не только повышают доход проекта за плановый период, но и упрощают управление процессом развития, а сам процесс делают менее рисковым; дан пример рациональной технологии конструирования новых моделей для новых задач, ориентированной на возможности Интернета, частности: "программное обеспечение как сервис".

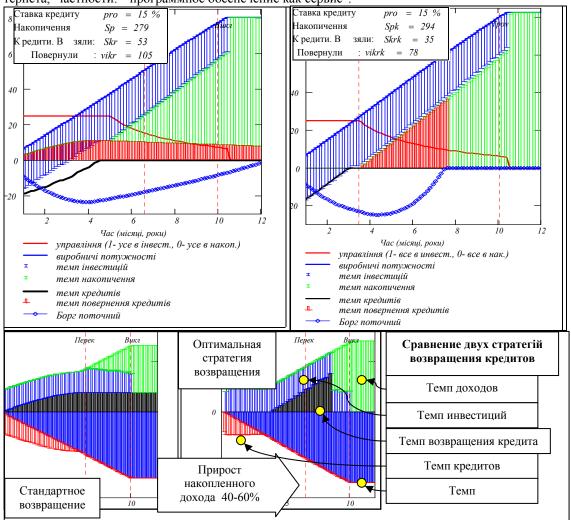


Рис. 5. Анализ стратегий возвращения кредитов в инвестиционных проектах

Литература:

- [1] Беллман Р., Гликсберг И., Гросс О. Некоторые вопросы математической теории управления. М.: Издат. иностр. литер., 1962. 233 с.
- [2] Мак-Дональд М. Стратегическое планирование маркетинга. Москва-Харьков: «Питер», 2001. 267 с.
- [3] Боровская Т.Н., Северилов В.А., Колесник И.С. Детская экономика. Моделирование и оптимизация производственных систем // Компьютеры +Программы. 2002. №2. С. 43 47. .
- [4] Боровська Т. М., Колесник І.С., Северілов В.А. Основи кібернетики та дослідження операцій. Навчальний посібник. Вінниця: ВДТУ, 2002.- 242 с.
- [5] Боровська Т.М., Колесник І.С., Северілов В.А. Спеціальні розділи вищої математики. Навч. посібник. Вінниця: ВДТУ, 2002.- 182 с.
- [6] Боровська Т.М., Северілов В.А., Бадьора С.П., Колесник І.С.Моделювання задач управління інвестиціями . Навч. посібник. Вінниця: ВДТУ, 2007. 182 с.