
Sec.H Intelligent Information Systems

 533

RANDOMNESS EXTRACTORS AND THEIR APPLICATIONS
Aristeidis Tentes

School of Applied Mathematics and Physics, National Technical University of Athens,
E-mail: aristentes@yahoo.gr

Abstract
Randomness plays a crucial role in the theory of algorithms. Many problems can be dealt much faster if randomness

is allowed, while some cryptographic tasks, as communication protocols, are impossible if we do not use randomness. The
problem is that these algorithms require perfect randomness, namely a source which provides us a sequence of unbiased and
independent bits. However, there is no source known to be easily accessible and perfect. Randomness Extractors are
functions, which deal with the problem of making the output of a (not perfect) weak source almost perfect,that is they extract
almost truly random bits from an imperfect source. In this survey we will see some basic definitions, an up to date list of the
most efficient extractors, some other almost equivalent pseudorandom objects and some applications of extractors.

1 Introduction
Randomized Algorithms is a very well studied area, because randomization not only allows some

problems to be solved faster than deterministically, but it also allows some tasks to be performed that are
impossible otherwise. Most of the cryptographic tasks rely on the fact that all parties have access to a source of
independent random bits. However, the problem is that there is no explicit way of obtaining independent random
bits as all current sources of randomness, like electromagnetic noise, which are accessible by computers and
used nowadays are highly believed to produce correlated bits. Randomness Extractors are functions, which take
as input sequences of bits of weak sources, namely sources which produce random but not necessarily
independed bits, and output another sequence of almost unbiased and independed bits. The initial motivation
was: given such Randomness Extractors simulate randomized algorithms using weak sources.

The first attempt of obtaining unbiased and independed random bits from a source which produces
independed but biased bits, with unknown bias, was made by von Neuman in [37]. The idea was simple: if the
source outputs 1 with probability p, then we can take every two bits and assign 1 if the outcome is 10 (which
happens with probability p(1-p)) and assign 0 if the outcome is 01 (which happens with the same probability
(1-p)p). Intuitively we can see that we cannot obtain as many truly random bits as the output of the source. This
is the price we pay for trying to convert the bits of a weak source to truly random. In this survey we will see
some constructions, which try to optimize the number of truly random bits and compare them with respect to
some other parameters.

Moreover it turned out that Randomness Extractors are almost equivalent to some other Pseudorandom
objects like Pseudorandom Generators, Expander Graphs and others. We will see some of these disguises of
Randomness Extractors and describe, somewhat informally, what they are. In the end we will see some
applications of Randomness Extractors in Complexity Theory and Cryptography.

2 Definitions
First of all we need to characterize the weak sources in some way. The first objective is to have a

measure, which is general and is also useful for our purpose. Such a measure is of course Shannon Entropy,
however it is not very convenient. Therefore another measure is used, called MinEntropy, defined below:

Definition: Let X be a random variable.

• Shanon Entropy: Its Shanon Entropy is .

• MinEntropy: Its MinEntropy is .

• k-Source: X is a k-Source if

To understand the difference between the two measures of entropy note that while the first gives roughly

the number of independed bits we can extract on average (having many samples of X), the latter gives the
smallest number of independed bits we can get from any sample. Suppose we have a source X which outputs
with probability 0.99 a sequence of n 1’s and with probability 0.1 a sequence of n truly random bits (i.e.
independed and unbiased). Then H(X) , while , that is although in average we can get 0.01n
bits in most cases we cannot get not even one truly random bit. Therefore, the stronger measure of MinEntropy is
used. Here we will focus on general sources, that is sources, for which the only assumption is their MinEntropy
and nothing else.

Before we formally define Randomness Extractors we have to define what their objective is. As we said
their purpose is to output a sequence which is almost uniformly random. This means that the statistical difference
of the output and a uniformly random variable of the same length is very small.

IES The Sixth International Conference “INTERNET –EDUCATION - SCIENCE”
Vinnytsia, Ukraine, October 7 –11, 2008

534

Definition (Statistical Difference):
• Let X, Y be two random Variables. Their Statistical Difference is defined to be

 or equivalently (can be shown)
|Pr[X .

• Let denote the random variable of n uniformly distributed unbiased bits. If then we say
that X is ε-close to uniform.

There is one hurdle in constructing Extractors. One can easily show that for every boolan function and for
every k there is a k-source (of a random variable with bits) from which it is impossible to extract even a
single random bit. As we want to construct an Extractor, which works for every k-source we have to allow to the
Extractors to take as an additional input a uniformly distributed variable, called the seed. Now we are ready to
formally define Randomness Extractors.

Definition ((k,ε)-Extractor):
The function Ext: is a (k,ε)-Extractor if for every k-source X with n bits, the

random variable is ε-close to . If in addition is is ε-close to then this
Extractor is called (k,ε)- strong Extractor.

3 Constructions
As we can see there are many parameters concerning Extractors. Using the probabilistic method we can

prove the following theorem
Theorem: For every and ε>0, there exists a (k, ε)-Extractor, with

 and .
The parameters we want to optimize are d and m. Given a k-source of length n we want an extractor with

a seed length as small as possible and an output as long as possible. It is also proven in [20] that for every
 and ε>0 such an extractor is optimal with respect to seed length and output length. Sometimes the

objective is to reduce the error parameter ε. However, as we mentioned, the proof of the above theorem is
existential and non-constructive, therefore a lot of work has been done in explicit constructions, namely
extractors which can be constructed and are computable in polynomial time. Below, there is a table with some of
the most popular extractors. Until now no construction has been proposed, which is optimal in both parameters
of seed length and output length. The first construnction is implied in [ILL89], with the use of universal Hash
Functions (Leftover Hash Lemma) and an improvement upon this can be found in [SZ99], using almost universal
Hash Functions ([NN90,AGHP92]). As we can see the construction of [TSUZ01] may have almost optimal
parameters but does not work for any k-source, because there is an upper bound on the MinEntropy. The best
Extractor proposed until today is the one of [LRVW03] and [GUV06] which may have the same parameters in
seed and output length but the latter has an improvement in case of a very small error ε.

 Table 1 − Constructions of Randomness Extractors
Publication MinEntropy (k) Seed length (d) Output length (m)
[10] for all k O(n) k + d + O(1)
[27] for all k O(k + logn) k + d + O(1)
[38] Ω(n) O(logn) Ω(k)
[29] for all k)
[21] k>n/2 k + d - O(1)
[30] Ο(logn) k + d - O(1)
[32] Ω(n) logn + O(loglogn) Ω(k)
[25] for all k (1+a)logn
[14] for all k O(logn) (1-a)k
[8] for all k O(logn) (1-a)k
Optimal for all k logn + O(1) k + d + O(1)

4 Other Pseudorandom objects
There is a list of other pseudorandom objects, which are almost equivalent to Randomness Extractors and

consequently almost equivalent to each other. Some of these objects are Expander graphs, Error Correcting
Codes, Pseudorandom Generators, Samplers and Hardness Amplifiers, which if seen from the appropriate point
of view can also be realized to be different disguises of Randomness Extractors. The significance of
Randomness Extractors can be seen by this (almost) equivalence as these objects have been studied separately as
well. This connection between these objects has been exploited through the last years by using techniques and

Sec.H Intelligent Information Systems

 535

ideas from one object to another.
Expander Graphs: Expander Graphs are graphs which are sparse, namely they have few edges, yet at

the same time they are very well connected. The most common measure of well connectedness is the vertex
expansion. A Graph is called (k,a)-vertex expander if for every set of vertices S with at most k vertices, the
neighborhood of S, that is the number of vertices of the graph connected to a vertex of S, is at least a|S|. Ideally
these graphs have constant degree d, they are d-regular, k=Ω(n) where n the number of the vertices of the graph
and a=1+Ω(1). Good Expander graphs have the useful property that a random walk converges very quickly to
the stationary distribution, which in this case means that we can use few random bits to take a very close to
uniform sample from the set of the vertices. There is a mass of work concerning Expander graphs due to their
interesting properties. A good survey is [23].

Error Correcting codes: Error Correcting Codes deal with the problem of sending a message over a
channel, which may corrupt the original message. These codes make it possible for the receiver to recover the
original message in case it has not been changed a lot. The aspect of Error Correcting codes, which is concerned
here is List Decoding where the algorithm of Decoding does not decode the original message with a single
message, but it ouputs a list of messages, one of which matches the original message. List Decoding enables to
correct more errors than standard Error Correcting Algorithms, while their running time is generally lower. For
more see [31].

Pseudorandom Generators: Pseudorandom generators are polynomially running functions, which take
as input a small seed, i.e. a short sequence of uniformly random bits, and outputs a much longer sequence of bits
which look random to every polynomial computation. This means that there is no polynomial algorithm which
can separate the output of the generator from an equally long uniformly random bit. Pseudorandom Generators
were firstly studied in [19] and the connection with randomness extractors was exploited in [28].

Samplers: Suppose we have a very large set S. If we want to choose a uniformly random element then
we have to use roughly unbiased and independed bits. Samplers are functions which take as input a few
uniformly random bits and output a list of elements of |S|, which have almost similar properties as if we had
chosen these elements uniformly at random. The connection between Samplers and Extractors was introduced in
[38].

Hardness Amplifiers: Hardness Amplifiers are methods, which increase the hardness of computing a
function. Suppose we have a function , with A,B finite, then we say that this function is (δ,s)-hard, if
every Boolean circuit of size does not compute correctly f for a fraction bigger than δ of A. A Hardness
Amplifier transforms this function to another one with a bigger δ. For the connection between Hardness
Amplifiers and List Decoding see [24] and [33].

A survey which shows the connection and the differences between these objects is [36]. However, in this
survey these objects are presented by the prism of Error Correcting Codes, which seems to be the most
convenient way of viewing the so called unified theory of Pseudorandomness.

5 Applications of Randomness Extractors
Randomness Extractors turned out to have various applications, other than the original motivation of

converting weak sources to good ones, some of which are quite surprising. Let us see now some of them:
Derandomization: Derandomization deals with the problem of converting randomized algorithms to non

randomized, without making them run too much slower. Take for example any language in BPP. It is trivial that
this language also belongs to EXP, as we can take all possible random bits we use in the BPP algorithm (which
are at most) and decide with the majority. However, under some complexity assumptions we can show that
BPP=P (we do not know yet if the equality holds), [2]. There are also many other similar results, for example
about the equality of AM and NP, in which Pseudorandom Generators and Randomness Extractors play crucial
role. See [26, 12]

Hardness of Approximation: Some problems which are thought to be difficult to be solved exactly are
easy to be approximated. However, if we make some reasonable assumptions, such as , some problems
turned out to be impossible to be efficiently approximated closer than a bound. In [39] there are results
concerning the inapproximability of the problems Max Clique and Chromatic Number. In [17] the hardness of
approximating the VC dimension is considered. These are some inapproximability results using Randomness
Extractors.

Embeddings: An Embedding is a map of projecting elements of a space X to another space Y in such a
way that the structure of the mapped X does not differ a lot from that of X. In [11] an explicit embedding is
given, which makes use of Randomness Extractors.

Fuzzy Extractors: Fuzzy Extractors deal with the problem of using private keys obtained by biometric
data for any cryptographic task. The problem is that biometric data (e.g. fingerprints) are not uniformly
distributed, which is very important in Cryptography, however they seem to have large MinEntropy. Moreover,
this kind of data is not always exactly the same (for instance a fingerprint may have a scratch), which makes it
impossible to be used as private key on its own. Randomness Extractors are very useful in this cryptographic

IES The Sixth International Conference “INTERNET –EDUCATION - SCIENCE”
Vinnytsia, Ukraine, October 7 –11, 2008

536

setting, for more see [4, 3]
Cryptography versus Bounded Storage Adversaries: The Bounded Storage Model was introduced by

Maurer in [16]. It assumes that a sender Alice and a receiver Bob have agreed on a short secret key and have
access to a public source. Eve, the adversary, has access to this source but can store only a limited number of
bits. Alice and Bob can then use their secret key as a seed for an extractor, which extracts the remaining
MinEntropy of the source, with respect to Eve’s view. The output looks almost universal to Eve and can be used
by Alice and Bob as a key as one-time pad for encryption. This extractor must have specific properties, see [15,
35].

Exposure Resilient Cryptography: Most Cryptosystems guarantee no security if part of the key is
exposed by the adversary. This area of cryptography deals with the problem of constructing functions which
have the property, that even a big fraction of the input is known, the outputs looks almost uniformly random.
Randomness Extractors turned out to play a major role, see [5, 13]

6 Conclusions
As we can see, Randomness Extractors are very important in Theory of Computation. It is not only their

original objective, which makes them so important, but also the variety of connections they turned out to have
with other areas of research. We saw that they are closely connected with other object, which carry a mass of
research on their own. In addition Extractors have many applications in other research areas, like Cryptography.

The main open problem is whether there exists an explicit construction with truly optimal parameters.
Recently a lot of work has been done in constructing seedless Extractors, for more specific sources, such as
affine sources [6], bit-fixing sources [7, 13] and others.

References:
[1] Noga Alon, Oded Goldreich, Johan Hºastad, and Rene Peralta. Simple construction of almost k-wise

independent random variables.Random Struct. Algorithms, 3(3):289{304, 1992.
[2] Lazlo Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson.Bpp has subexponential time simulations

unless exptime has publishable proofs. Computational Complexity, 3:307{318, 1993.
[3] Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, and Adam Smith.Robust fuzzy extractors and authenticated

key agreement from close secrets. In CRYPTO, pages 232{250, 2006.
[4] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong keys from

biometrics and other noisy data.In EUROCRYPT, pages 523{540, 2004.
[5] Yevgeniy Dodis, Amit Sahai, and Adam Smith. On perfect and adaptive security in exposure-resilient

cryptography. In EUROCRYPT, pages 301{324, 2001.
[6] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large fields. In FOCS, pages

407{418, 2005.
[7] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-fixing sources by obtaining an

independent seed. SIAMJ. Comput., 36(4):1072{1094, 2006.
[8] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan.Unbalanced expanders and randomness

extractors from parvaresh vardy codes. In IEEE Conference on Computational Complexity, pages 96{108,
2007.

[9] Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. Simplified derandomization of bpp using a hitting set
generator. Electronic Colloquium on Computational Complexity (ECCC), 7(4), 2000.

[10] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudorandom generation from one-way
functions (extended abstracts). InSTOC, pages 12{24, 1989.

[11] Piotr Indyk. Uncertainty principles, extractors, and explicit embeddings of l2 into l1. In STOC, pages
615{620, 2007.

[12] Russell Impagliazzo and Avi Wigderson.B = BPP if requires exponential circuits: Derandomizing the xor
lemma. In STOC, pages220{229, 1997.

[13] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and exposure-resilient
cryptography. SIAM J. Comput., 36(5):1231{1247, 2007.

[14] Chi-Jen Lu, Omer Reingold, Salil P. Vadhan, and Avi Wigderson.Extractors: optimal up to constant factors.
In STOC, pages 602{611, 2003.

[15] Chi-Jen Lu. Hyper-encryption against space-bounded adversaries from on-line strong extractors. In
CRYPTO, pages 257{271, 2002.

[16] Ueli Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of
Cryptology, 5(1):53{66, 1992. Preliminary version

[17] Elchanan Mossel and Christopher Umans. On the complexity of approximating the vc dimension. J.
Comput. Syst. Sci., 65(4):660{671, 2002.

[18] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and applications. In
STOC, pages 213{223, 1990.

Sec.H Intelligent Information Systems

 537

[19] Noam Nisan and Avi Wigderson. On rank vs. communication complexity. In FOCS, pages 831{836, 1994.
[20] Jaikumar Radhakrishnan and Amnon Ta-Shma. Bounds for dispersers, extractors, and depth-two

superconcentrators. SIAM J.Discrete Math., 13(1):2{24, 2000.
[21] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product, and new

constant-degree expanders and extractors. In FOCS, pages 3{13, 2000.
[22] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the EATCS,

77:67{95, 2002.
[23] N Linial S Hoory and Avi Wigderson. Expander graphs and their applications. In Bull. of the AMS, 43(4),

pages 439{561, 2006.
[24] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without the xor lemma. J.

Comput. Syst. Sci., 62(2):236{266, 2001.
[25] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new pseudo-random

generator. In FOCS, pages 648{657, 2001.
[26] Ronen Shaltiel and Christopher Umans. Low-end uniform hardness vs. randomness tradeoffs for am. In

STOC, pages 430{439, 2007.
[27] Aravind Srinivasan and David Zuckerman. Computing with very weak random sources. SIAM J. Comput.,

28(4):1433{1459, 1999.
[28] Luca Trevisan. Extractors and pseudorandom generators. J. ACM,48(4):860{879, 2001.
[29] Luca Trevisan. Pseudorandomness and combinatorial constructions. Electronic Colloquium on

Computational Complexity (ECCC),(013), 2006.
[30] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers, unbalanced expanders,

and extractors. In STOC,pages 143{152, 2001.
[31] Amnon Ta-Shma and David Zuckerman. Extractor codes. In STOC,pages 193{199, 2001.
[32] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. Extractors from reed-muller codes. In FOCS,

pages 638{647, 2001.
[33] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via uniform

reductions. In IEEE Conference on Computational Complexity, pages 129{138, 2002.
[34] Salil Vadhan. Lecture notes on pseudorandomness, http://eecs.harvard.edu/ salil/cs225, 2007.
[35] Salil P. Vadhan. Constructing locally computable extractors and cryptosystems in the bounded-storage

model. J. Cryptology,17(1):43{77, 2004.
[36] Salil P. Vadhan. The unified theory of pseudorandomness: guest column. SIGACT News, 38(3):39{54,

2007.
[37] J. von Newman. Various techniques used with connection with random digits. National Bureau of

Standards, Applied Math. Series,12:36{38, 1951.
[38] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algorithms, 11(4):345{367,

1997.
[39] David Zuckerman. Linear degree extractors and the inapproximability of max clique and chromatic number.

In STOC, pages 681{690,2006.

