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Abstract  
Randomness plays a crucial role in the theory of algorithms. Many problems can be dealt much faster if randomness 

is allowed, while some cryptographic tasks, as communication protocols, are impossible if we do not use randomness. The 
problem is that these algorithms require perfect randomness, namely a source which provides us a sequence of unbiased and 
independent bits. However, there is no source known to be easily accessible and perfect.  Randomness Extractors are 
functions, which deal with the problem of making the output of a (not perfect) weak source almost perfect,that is they extract 
almost truly random bits from an imperfect source. In this survey we will see some basic definitions, an up to date list of the 
most efficient extractors, some other almost equivalent pseudorandom objects and some applications of extractors.  
 

1 Introduction 
Randomized Algorithms is a very well studied area, because randomization not only allows some 

problems to be solved faster than deterministically, but it also allows some tasks to be performed that are 
impossible otherwise. Most of the cryptographic tasks rely on the fact that all parties have access to a source of 
independent random bits. However, the problem is that there is no explicit way of obtaining independent random 
bits as all current sources of randomness,  like electromagnetic noise, which are accessible by computers and 
used nowadays are highly believed to produce correlated bits. Randomness Extractors are functions, which take 
as input sequences of bits of weak sources, namely sources which produce random but not necessarily 
independed bits, and output another sequence of almost unbiased and independed bits.  The initial motivation 
was: given such Randomness Extractors simulate randomized algorithms using weak sources. 

The first attempt of obtaining unbiased and independed random bits from a source which produces 
independed but biased bits, with unknown bias, was made by von Neuman in [37]. The idea was simple: if the 
source outputs 1 with probability p, then we can take every two bits and assign 1 if the outcome is 10 (which 
happens with probability p(1-p) ) and assign 0 if the outcome is 01 (which happens with the same probability               
(1-p)p). Intuitively we can see that we cannot obtain as many truly random bits as the output of the source. This 
is the price we pay for trying to convert the bits of a weak source to truly random. In this survey we will see 
some constructions, which try to optimize the number of truly random bits and compare them with respect to 
some other parameters.  

Moreover it turned out that Randomness Extractors are almost equivalent to some other Pseudorandom 
objects like Pseudorandom Generators, Expander Graphs and others. We will see some of these disguises of 
Randomness Extractors and describe, somewhat informally, what they are. In the end we will see some 
applications of Randomness Extractors in Complexity Theory and Cryptography. 

 

2 Definitions 
First of all we need to characterize the weak sources in some way. The first objective is to have a 

measure, which is general and is also useful for our purpose. Such a measure is of course Shannon Entropy, 
however it is not very convenient. Therefore another measure is used, called MinEntropy, defined below: 

Definition: Let X be a random variable. 
 

• Shanon Entropy: Its Shanon Entropy is . 

• MinEntropy:  Its MinEntropy is . 

• k-Source: X is a k-Source if  
 
To understand the difference between the two measures of entropy note that while the first gives roughly 

the number of independed bits we can extract on average (having many samples of X), the latter gives the 
smallest number of independed bits we can get from any sample. Suppose we have a source X which outputs 
with probability 0.99 a sequence of n 1’s and with probability 0.1 a sequence of n truly random bits (i.e. 
independed and unbiased). Then H(X) , while  , that is although in average we can get 0.01n  
bits in most cases we cannot get not even one truly random bit. Therefore, the stronger measure of MinEntropy is 
used. Here we will focus on general sources, that is sources, for which the only assumption is their MinEntropy 
and nothing else. 

Before we formally define Randomness Extractors we have to define what their objective is. As we said 
their purpose is to output a sequence which is almost uniformly random. This means that the statistical difference 
of the output and a uniformly random variable of the same length is very small. 
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Definition (Statistical Difference):  
• Let X, Y be two random Variables. Their Statistical Difference is defined to be 

 or equivalently (can be shown) 
|Pr[X .  

• Let  denote the random variable of n uniformly distributed unbiased bits. If  then we say 
that X is ε-close to uniform. 

There is one hurdle in constructing Extractors. One can easily show that for every boolan function and for 
every k there is a k-source (of a random variable with  bits) from which it is impossible to extract even a 
single random bit. As we want to construct an Extractor, which works for every k-source we have to allow to the 
Extractors to take as an additional input a uniformly distributed variable, called the seed. Now we are ready to 
formally define Randomness Extractors.  

Definition ((k,ε)-Extractor): 
The function Ext:  is a (k,ε)-Extractor if for every k-source X with n  bits, the 

random variable  is ε-close to . If in addition  is is ε-close to  then this 
Extractor is called (k,ε)- strong Extractor. 

3 Constructions 
As we can see there are many parameters concerning Extractors. Using the probabilistic method we can 

prove the following theorem 
Theorem: For every  and ε>0, there exists a (k, ε)-Extractor, with 

  and .  
The parameters we want to optimize are d and m. Given a k-source of  length n we want an extractor with 

a seed length as small as possible and an output as long as possible. It is also proven in  [20]  that for every 
 and ε>0 such an extractor is optimal with respect to seed length and output length. Sometimes the 

objective is to reduce the error parameter ε. However, as we mentioned, the proof of the above theorem is 
existential and non-constructive, therefore a lot of work has been done in explicit constructions, namely 
extractors which can be constructed and are computable in polynomial time. Below, there is a table with some of 
the most popular extractors.  Until now no construction has been proposed, which is optimal in both parameters 
of seed length and output length. The first construnction is implied in [ILL89], with the use of universal Hash 
Functions (Leftover Hash Lemma) and an improvement upon this can be found in [SZ99], using almost universal 
Hash Functions ([NN90,AGHP92]). As we can see the construction of [TSUZ01] may have almost optimal 
parameters but does not work for any k-source, because there is an upper bound on the MinEntropy. The best 
Extractor proposed until today is the one of [LRVW03] and [GUV06] which may have the same parameters in 
seed and output length but the latter has an improvement in case of a very small error ε. 

                                                                           Table 1 − Constructions of Randomness Extractors 
Publication MinEntropy (k) Seed length (d) Output length (m) 
[10] for all k O(n) k + d + O(1) 
[27] for all k O(k + logn) k + d + O(1) 
[38] Ω(n) O(logn) Ω(k) 
[29] for all k )  
[21] k>n/2 k + d - O(1) 
[30] Ο(logn) k + d - O(1) 
[32] Ω(n) logn + O(loglogn) Ω(k) 
[25] for all k (1+a)logn  
[14] for all k O(logn) (1-a)k 
[8] for all k O(logn) (1-a)k 
Optimal for all k logn + O(1) k + d + O(1) 

4 Other Pseudorandom objects 
There is a list of other pseudorandom objects, which are almost equivalent to Randomness Extractors and 

consequently almost equivalent to each other. Some of these objects are Expander graphs, Error Correcting 
Codes, Pseudorandom Generators, Samplers and Hardness Amplifiers, which if seen from the appropriate point 
of view can also be realized to be different disguises of Randomness Extractors.  The significance of 
Randomness Extractors can be seen by this (almost) equivalence as these objects have been studied separately as 
well. This connection between these objects has been exploited through the last years by using techniques and 
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ideas from one object to another. 
Expander Graphs: Expander Graphs are graphs which are sparse, namely they have few edges, yet at 

the same time they are very well connected. The most common measure of well connectedness is the vertex 
expansion. A Graph is called (k,a)-vertex expander if for every set of vertices S with at most k vertices, the 
neighborhood of S, that is the number of vertices of the graph connected to a vertex of S, is at least a|S|.  Ideally 
these graphs have constant degree d, they are d-regular, k=Ω(n) where n the number of the vertices of the graph 
and a=1+Ω(1). Good Expander graphs have the  useful property that a random walk converges very quickly to 
the stationary distribution, which in this case means that we can use few random bits to take a very close to 
uniform sample from the set of the vertices. There is a mass of work concerning Expander graphs due to their 
interesting properties. A good survey is [23]. 

Error Correcting codes: Error Correcting Codes deal with the problem of sending a message over a 
channel, which may corrupt the original message. These codes make it possible for the receiver to recover the 
original message in case it has not been changed a lot. The aspect of Error Correcting codes, which  is concerned 
here is List Decoding where the algorithm of Decoding does not decode the original message with a single 
message, but it ouputs a list of messages, one of which matches the original message. List Decoding enables to 
correct more errors than standard Error Correcting Algorithms, while their running time is generally lower. For 
more see [31]. 

Pseudorandom Generators: Pseudorandom generators are polynomially  running functions, which take 
as input a small seed, i.e. a short sequence of uniformly random bits, and outputs a much longer sequence of bits 
which look random to every  polynomial computation. This means that there is no polynomial algorithm which 
can separate the output of the generator from an equally long uniformly random bit. Pseudorandom Generators 
were firstly studied in [19] and the connection with randomness extractors was exploited in [28]. 

Samplers: Suppose we have a very large set S. If we want to choose a uniformly random element then 
we have to use roughly  unbiased and independed bits. Samplers are functions which take as input a few 
uniformly random bits and output a list of elements of |S|, which have almost similar properties as if we had 
chosen these elements uniformly at random.  The connection between Samplers and Extractors was introduced in 
[38]. 

Hardness Amplifiers: Hardness Amplifiers are methods, which increase the hardness of computing a 
function. Suppose we have a function , with A,B finite, then we say that this function is (δ,s)-hard, if 
every Boolean circuit of size does not compute correctly f for a fraction bigger than δ of A. A Hardness 
Amplifier transforms this function to another one with a bigger δ. For the connection between Hardness 
Amplifiers and List Decoding see [24] and [33].  

A survey which shows the connection and the differences between these objects is [36]. However, in this 
survey these objects are presented by the prism of Error Correcting Codes, which seems to be the most 
convenient way of viewing the so called unified theory of Pseudorandomness. 

5 Applications of Randomness Extractors 
Randomness Extractors turned out to have various applications, other than the original motivation of 

converting weak sources to good ones, some of which are quite surprising. Let us see now some of them: 
Derandomization: Derandomization deals with the problem of converting randomized algorithms to non 

randomized, without making them run too much slower. Take for example any language in BPP. It is trivial that 
this language also belongs to EXP, as we can take all possible random bits we use in the BPP algorithm (which 
are at most ) and decide with the majority. However, under some complexity assumptions we can show that 
BPP=P (we do not know yet if the equality holds), [2]. There are also many other similar results, for example 
about the equality of AM and NP, in which Pseudorandom Generators and Randomness Extractors play crucial 
role. See [26, 12] 

Hardness of Approximation:  Some problems which are thought to be difficult to be solved exactly are 
easy to be approximated. However, if we make some reasonable assumptions, such as , some problems  
turned out to be impossible to be efficiently approximated closer than a bound. In [39] there are results 
concerning the inapproximability of the problems Max Clique and Chromatic Number. In [17] the hardness of 
approximating the VC dimension is considered. These are some inapproximability results using Randomness 
Extractors. 

Embeddings: An Embedding is a map of projecting elements of a space X to another space Y in such a 
way that the structure of the mapped X does not differ a lot from that of X. In [11] an explicit embedding is 
given, which makes use of Randomness Extractors.  

Fuzzy Extractors: Fuzzy Extractors deal with the problem of using private keys obtained by biometric 
data for any cryptographic task. The problem is that biometric data (e.g. fingerprints) are not uniformly 
distributed, which is very important in Cryptography, however they seem to have large MinEntropy. Moreover, 
this kind of data is not always exactly the same (for instance a fingerprint may have a scratch), which makes it 
impossible to be used as private key on its own. Randomness Extractors are very useful in this cryptographic 
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setting, for more see [4, 3]  
Cryptography versus Bounded Storage Adversaries: The Bounded Storage Model was introduced by 

Maurer in [16]. It assumes that a sender Alice and a receiver Bob have agreed on a short secret key and have 
access to a public source. Eve, the adversary, has access to this source but can store only a limited number of 
bits. Alice and Bob can then use their secret key as a seed for an extractor, which extracts the remaining 
MinEntropy of the source, with respect to Eve’s view. The output looks almost universal to Eve and can be used 
by Alice and Bob as a key as one-time pad for encryption. This extractor must have specific properties, see [15, 
35]. 

Exposure Resilient Cryptography: Most Cryptosystems guarantee no security if part of the key is 
exposed by the adversary. This area of cryptography deals with the problem of constructing functions which 
have the property, that even a big fraction of the input is known, the outputs looks almost uniformly random. 
Randomness Extractors turned out to play a major role, see [5, 13] 

6 Conclusions 
As we can see, Randomness Extractors are very important in Theory of Computation. It is not only their 

original objective, which makes them so important, but also the variety of connections they turned out to have 
with other areas of research. We saw that they are closely connected with other object, which carry a mass of 
research on their own. In addition Extractors have many applications in other research areas, like Cryptography.  

The main open problem is whether there exists an explicit construction with truly optimal parameters. 
Recently a lot of work has been done in constructing seedless Extractors, for more specific sources, such as 
affine sources [6], bit-fixing sources [7, 13] and others.  
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