
УДК 004.67

Rodriges Zalipynis R.A.

NEW METHODS FOR VISUALIZATION OF LARGE VOLUMES OF

ECOLOGICAL AND CLIMATIC DATA

Effective visualization is crucial for data understanding. This paper describes a

method for constructing georeferenced isolines from a global latitude-longitude regular grid.

Unlike previous efforts, it represents isolines with polygons and guarantees that all of them

are closed. This dramatically reduces the number of objects a visualization subsystem must

deal with. The method is operational in Climate Wikience to provide interactive, 3D, real-

time, terrain-following isolines for large volumes of ecological and climatic data.

Introduction

For over 15 years, the majority of climate research is based on climate reanalysis

archives [1, 2]. They contain retrospective data for up to 80 atmospheric parameters with 6

hour interval on regular latitude-longitude grids for the previous 30 years. Plotting isolines is

crucial preparation step before any further map interpretation [3].

Surprisingly, in spite of great impact on data understanding, there are no tools to plot

isolines effectively on-demand which often required when exploring large volumes of

georeferenced data. This paper presents isolines construction method consisting of 3 stages.

First, it uses CONREC algorithm [4] to build segments on locally triangulated latitude-

longitude grid. Second, it builds R-Tree to accelerate searching of neighbor segments. Lastly,

it connects the segments into closed polygons both to speed up the visualization and enable

GIS features.

The straightforward visualization of CONREC segments is prohibitively expensive

since there are tens of thousands of segments for a single grid. A visualization subsystem is

incapable to handle this number of objects effectively.

Also, segments connection is not a trivial task since global latitude-longitude

coordinate system has peculiarities on the poles and near -180° longitude. In addition, for real

data CONREC does not always generate necessary segments what results in gaps and

unclosed isolines. Special heuristics were invented to handle these situations properly and

effectively.

Background on Climate Wikience

Climate Wikience [5] consists of two main parts. Desktop GUI (Climate Wikience)

responsible for interactive 3D visualization of georeferenced data and ChronosServer,

enabling real-time data delivery from the cloud to thousands of concurrent GUIs.

For vast amounts of climate reanalysis data, it is impossible to create isolines for all

available grids in advance and deliver them on demand. This is because the method for

isolines construction has many parameters and isolines, if built, will take several times more

space than grids themselves.

Climate Wikience is highly interactive GUI which allows users to explore the Earth

ecological and climatic data in 3D. It is impractical to store terabytes of those data on local

hard drive. Climate Wikience queries ChronosServer seamlessly to the user to retrieve the

required data for visualization. Usually, the data exchange is carried out per grid bases. For

example, "SELECT DATA FROM r2.pressure.msl WHERE TIME = 01.01.2003 00:00" will

return AMIP/DOE Reanalysis 2 regular 2.5°×2.5° latitude-longitude grid for mean sea level

pressure for 2003 Jan 01, 00:00 UTC (fig. 1).

Figure 1 – Mean sea level pressure regular grid with isobars for 01/01/2003 00:00

UTC shown at 20° and 500 GPa intervals respectively. Circle sizes are proportional to

pressure values. Built in 3D with Climate Wikience using AMIP/DOE Reanalysis 2

Isolines

For a given function of two variables, latitude, and longitude, defined over a

geographic area, a contour line represents a curve along which the function value is constant

[3].

For climatic data, isolines are vital for interpretation of an atmospheric state. For

example, cyclones are identified visually as several closed isobars nested in each other.

Cyclones are key atmospheric components responsible for heat transfer from the tropics to the

pole, define local weather conditions, strongly influence severe weather events, droughts and

floods. Some of them, like hurricane Katrina, result in lives loss and devastation. However,

today's publications contain very poor isolines plots which vague the perception.

To plot isolines, one need to specify levels for which isolines will be built,

L={l0, l2, …, lm}
(

1)

For example, for pressure levels this may be (in hPa): L = {1000, 925, 850, 700, 600,

500, 400, 300, 250, 200, 150, 100, 70, 50, 30, 20, 10}.

At least two ways exist to specify the levels. The first one is the enumeration of level

values as shown above while second is specifying min, max and step parameters from which

the levels will be generated. The li is calculated as

li = min + step×I,
(

2)

m = (max–min)/step,
(

3)

where the division in (3) is integer. In either case, the algorithms in this paper operate

with the set of contouring levels L, regardless of the isolines specification way.

CONREC Algorithm

The CONREC algorithm was introduced in 1987 by Paul Bourke [4]. To author’s best

knowledge it is the only description of a contouring routine available on the Web. Let each

rectangle of a global regular latitude-longitude grid has coordinates

f(lat, lon), f(lat, lon+δ),

f(lat+δ, lon), f(lat+δ, lon+δ),

(

4)

where δ is the resolution of a grid, for example, 2.5 for 2.5°×2.5° grid. Each rectangle

is divided onto 4 triangles by its diagonals. The center point is assigned the average value of

its corresponding corners.

To build a contour line for level li, each triangle is intersected with the plane p(lat, lon)

= li. The result of intersection (if it takes place) is a segment. A human eye perceives them as

a continuous curve once drawn on a computer display but in fact it is a large number of

independent elements. According to [4], there are 10 possible outcomes of the plane p and a

triangle intersection (fig. 2).

Figure 2 – Possible outcomes of plane and triangle intersection

For cases (a), (b), (i), (j), (g) CONREC does not generate segments. They occur when

all triangle vertices lie below (a) or above (j) plane p, only a single vertice lies on a plane p

and all the rest are below (b) or above (i) it. Lastly, all vertices may lie on the plane p (g).

Other cases result in a segment: two vertices lie below and one above plane p (c) or,

vice versa, two vertices lie above and one below (f). Also, two vertices may lie on the plane p

and one vertice below (d) or above it (h). The (e) case takes place when one of the vertices lie

on the plane p, one above and one below it.

The input data to CONREC must be prepared in a special way to build segments for

global latitude-longitude grid. There is only a single point at a pole because of longitude

convergence. The value for a pole must be replicated for each longitude to form rectangles

instead of triangles in order not to alter the CONREC algorithm. These rectangles will have

two vertices with the same coordinates and values.

Also, longitude coordinates -180° and +180° must be considered equivalent. Any

reference to -180° or +180° must retrieve data stored at +180°.

Segments glue algorithm

Let Si denote the set of all segments for a single regular grid found by CONREC

algorithm for level li L. The algorithm assumes that isolines do not intersect. For each

segment in Si, a bounding box is created to put it in R-Tree to accelerate search operations.

Let R-TREE(i) be a constructed R-Tree for all segments from Si.

While constructing R-Tree the following rule must be preserved. If one of the segment

endpoints has longitude value equal to -180°, it must be changed to +180° if other endpoint

has positive longitude value and must not be changed if its sign is also negative.

The algorithm ISOLINES-GLUE (fig. 4) takes as input the segments Si and R-TREE(i).

It yields the set of closed isolines Ii for level i and parts of isolines Ui that have gaps for the

same level. Parts are merged into closed isolines with the algorithm ISOLINES-GLUE-U (fig.

6) presented later in this paper.

The algorithm represents an isoline l as closed polygon with a sequence of points l =

<p0, p1, …, pN> where p0= pN and pi = (lati, loni) where lati and loni are latitude and longitude

coordinates respectively for point pi. Let s(1) and s(2) be the endpoints for the segment sSi.

Let also l[i] denote point pi of isoline l.

The algorithm builds isolines sequentially, one at a time. It starts from an arbitrary

segment that has not been marked yet as part of another isoline. New segments are attached

only at one end of the isoline under construction (fig. 3).

Figure 3 – Attachment of new segments to an isoline. Black – visited segments, grey –

candidates for gluing, dotted – not visited segments

 ISOLINE-GLUE: Si, R-TREE(i)  Ii, Ui

1 Ii { }, Ui { }

2 while Si  

3 s  Si // choose arbitrary segment from Si

4 Si Si \ {s}

5 l <s(1), s(2)> // new isoline which is being built

6 i 1 // last index in sequence l corresponding to point p1 = s(2)

7 while l[i] ≠ l[0] // while not closed

8 C R-TREE(i).neighbor-search(l[i])  Si

9 D { c C : dist(l[i], c(1))  ε  dist(l[i], c(2))  ε}

1

0

 if |D| = 1

1 then d D

1 else if |D|  1

1 then dheuristic-tie(D) (fig. 6)

1 else Ui Ui {l}

1 Break

1 l  l + (dist(l[i], d(1))  ε) ? d(1) : d(2)

1 i  i + 1

1 Ii Ii {l}

Figure 4 – Segments glue algorithm

In line 3 the algorithm takes any segment which has not yet participated in gluing. In

line 5 it creates new isoline with a single segment chosen previously at line 3. The loop in

lines 6–15 seeks for segments to continue isoline l until it becomes closed or a special case

(line 14) is encountered leaving it unclosed. Although it is only a part of an isoline it is

nevertheless called isoline.

Fast neighbor search is performed using R-TREE(i) to determine segments located

close to the point l[i] and prune already used one (line 8). Only a segment with one of its

endpoints equal to the point l[i] may become a candidate for attachment to the isoline under

construction. Function dist(·,·) takes two points as its arguments and calculates Euclidian

distance between them. A constant parameter ε is usually set to 0.01 and introduced to deal

with inaccuracies taking place in floating point calculations.

Normally, one candidate segment must be found (line 10). Several candidates (line 12)

are possible when two isolines touch each other in one point (fig. 5c). Note, that all of the

segments shown on figure 6a may comprise a single isoline in reality. However, the grid

resolution is insufficient in this case to determine the real situation. Thus, the most correct

solution is to treat them as two separate isolines.

A heuristic rule is used to choose between the candidates. It selects a segment which

endpoint is the farthest from the point l[i–1]. This endpoint must not be equal to l[i]

(determined similar as in line 16). On figure 5c, l[i–1] = A, l[i] = O and OD, OB, OC are

candidate segments. Their endpoints not equal to l[i] are D, B, and C respectively. The

distance is measured between A and D, A and B, A and C. Finally, OD segment is chosen

since point D is the farthest from point A = l[i–1]. This rule was devised after practical study

of isolines touching each other. This case occurs frequently in real data, especially with

slowly varying fields like mean sea level pressure.

Figure 5 – Heuristic rule to break ties with several candidates

In case of |D| = 0 (no candidates for isoline continuation), it is added to the set of

unclosed isolines (line 14). Ternary C-style operator a?b:c returns b if condition a is true or c

otherwise (line 16).

Unclosed isolines occur due to absence of segments connecting isoline parts. Recall,

that for certain cases CONREC generate only points (b), (i) or does not generate segments at

all (g). While this is formally correct, for real data this causes gaps in an isoline curve (when

several triangle vertices with distinct coordinates have equal values).

Consider the case when only one segment is absent for an isoline. Thus, Ui will

contain at least two parts that will need to be glued with each other. This takes place since the

algorithm stops once it does not find a segment to continue the isoline. However, the

remaining segments belonging to the same isoline will be glued into a separate isoline since

they are not allowed to attach to that part of the isoline that contains already used segments.

The remaining part of the isoline may be also split into several parts depending on the

segment endpoint from which the construction started.

However, if isoline construction starts from the segment having one of its endpoints

equivalent to one of the endpoints of the missing segment, the first and the last isoline

endpoints must be checked (line 13, fig. 6).

In line 7 the algorithm seeks for an isoline part to glue with isoline part l. It selects the

closest isoline to l within constant distance µ. The len(l) function returns the number of

elements in sequence l (number of points in isoline part). For an ERA-Interim [6] grid with

1.5°×1.5° resolution, µ is chosen to be 2 ×1.5. This is the maximum length of segment that

could be added to an isoline by this algorithm. The maximum length of a segment built by

CONREC is 1.5. However, for real data none of the segments may be built for any of the

triangles of a single rectangle when it has the same values in all of its endpoints.

 ISOLINE-GLUE-U: Ui, Ii  Ii

1 while Ui  

2 l  Ui // get arbitrary unclosed isoline

3 Ui  Ui \ {l}

5 i  len(l) – 1

6 while l[i] ≠ l[0] // while not closed

7 D { u Ui : dist(l[i], u[0])µ  dist(l[i], u[len(u) –1])µ }

8 if |D|  1

9 then d D

1 else if |l|  2

1 then break

1 else if |D| = 0

1 then if dist(l[i], l[0])  µ

1 then d <l[0]>

1 else error

1 l  l + d

1 i  i + len(d) – 1

1 Ui Ui \ {d}

1 Ii Ii {l}

Figure 6 – Glue algorithm of unclosed isolines

If an isoline has only 2 points (line 10) it is totally removed. This happens for real data

when small islands of a particular value exist. However, the grid resolution is insufficient to

build an isoline with non zero area. These confluent isolines have no meaning to a person

exploring data visually.

The algorithm reports an error when two or more successive segments are absent or

when the data are incorrect (line 15). This case has not been observed.

Performance evaluation

The method was implemented on Java, embedded in Climate Wikience, and tested on

the machine with characteristics shown in table 1.

Table 1. Machine characteristics

OS RAM Processor Java ver.

Windows 7 2 GB AMD Athlon II Dual-Core P320 (2.1 GHz) 1.6.0.26

Table 2 lists the time for each step of the algorithm, the number of segments generated

by the CONREC and isolines number resulted from gluing the segments. Note, that the

number of isolines is always significantly smaller (almost in 200 times) than the number of

segments. Using polygons instead of separate segments considerably reduces load onto a

visualization subsystem.

Mean sea level pressure ERA-Interim 1.5°×1.5° (240×120 points) grids were taken to

evaluate the performance of the implemented method. The runtime is almost the same for

each of these grids, thus, table 2 shows typical runtime values for a randomly taken grid.

Measurements were done for 4 different steps (the first row of table 2). The isolines

levels were calculated using formulas (2) and (3). The min and max values were not fixed.

For each grid minimum and maximum values that it contains were taken.

Table 2. Performance characteristics of the method implementation

 1000 500 250 100

CONREC, ms 13,63 19,27 74,28 356,25

R-Tree, ms 80,11 137,32 243,87 628,73

GLUE, ms 157,16 306,37 249,27 845,31

TOTAL, ms 250,90 462,96 567,42 1830,29

Segments, # 15358 30898 61332 154740

Isolines, # 86 170 332 859

The execution time for ISOLINE-GLUE-U algorithm is negligible and not shown.

Typically, less than 1% of total isolines have missing segments.

With 100 Pa step isobars are very dense. In certain regions distance between two

neighbor isobars reaches 20 km and less.

The execution time of each method stage reveals that a great deal of time is spent on

the construction of R-Tree (fig. 7).

Two observations make possible to eliminate both the time required to construct the

R-Tree and the time for neighbor search in ISOLINE-GLUE algorithm that uses it.

The first observation is about the nature of CONREC algorithm: only one segment per

triangle may exist. The second is about nature of grid structure: all of the triangles have

homogenous coordinates.

CONREC

19,27 4%

GLUE

306,37

66%

R-TREE

137,32

30%

CONREC

356,25 19%

GLUE

845,31

47%

R-TREE

628,73

34%

(a) (b)

Figure 7 – Execution time of method stages for step 500 (a) and 100 (b)

Thus, a triangle containing point with given latitude and longitude coordinates may be

easily located in Ο(1). A simple bucket data structure may be used with constant search time

instead of R-Tree.

Conclusion

This paper presented isolines construction method and evaluated its performance on

real data. Unlike other isoline plotting algorithms, the proposed method represents isolines by

polygons instead of separate segments. The polygons are closed and their number is almost

200 times less than the number of segments for climate reanalysis grids.

This enables GIS operations on them as well as their efficient interactive exploration.

Also, the method proposes heuristics to deal with cases that frequently occur in real data like

guessing missing segments.

The proposed method is successfully used in Climate Wikience which constructs

isolines on-the-fly in real-time in 3D for any grid in a climate reanalysis archive.

This paper does not contain colored 3D image of isolines due to grayscale printing of

collected articles this paper belongs to. The reader is encouraged to try out the method in

action himself. Climate Wikience is freely available at wikience.donntu.edu.ua.

Acknowledgements

This work was supported by Award No. UKM1-2973-DO-09 of the U.S. Civilian

Research & Development Foundation (CRDF). Any opinions, findings and conclusions or

recommendations expressed in this material are those of the author and do not necessarily

reflect the views of CRDF.

Literature

1. Kalnay, E. et al., The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer.

Meteor. Soc. (77), pp. 437–471, 1996.

2.Compo G.P. et al., The Twentieth Century Reanalysis Project. Part A., Q. J. R.

Meteorol. Soc., pp. 137 - 128, January, 2011.

3.Contour line [Electronic resource] – Access method:

http://en.wikipedia.org/wiki/Contour_line (09.04.2012).

4.CONREC: A Contouring Subroutine [Electronic resource] – Access method:

http://paulbourke.net/papers/conrec/ (09.04.2012).

5. Rodriges Zalipynis R.A., Zapletin E.A., Averin G.V. The Wikience: Community

Data Science. Concept and Implementation., Proc. of the 7th Intl. Scientific-

Technical Conference "Informatics and Computer Technologies" (ICT–2011), Vol.

1, pp. 113–117, Donetsk, November 22–23, 2011.

6. Dee D. P. et al., The ERA-Interim reanalysis: configuration and performance of

the data assimilation system, Q. J. R. Meteorol. Soc., Vol. 137 (656), pp. 553–597,

2011.

